Results for: harm Search Results
Family Filter:
3:21
Dear friend, in this video we are going to discuss about the herbal liver cleanse pills. Livoxil capsule is one of the best herbal liver cleanse pills to flush harmful toxins from body without any negative effects.
19 Sep 2017
18
Share Video

3:34
Dear friend, in this video we are going to discuss about the herbal liver cleansing supplements. Livoplus capsule is one of the best herbal liver cleansing supplements to remove harmful toxins and improve overall health safely.
19 Sep 2017
22
Share Video

15:44
Radiation damage to tissue and/or organs depends on the dose of radiation received, or the absorbed dose which is expressed in a unit called the gray (Gy). The potential damage from an absorbed dose depends on the type of radiation and the sensitivity of different tissues and organs. The effective dose is used to measure ionizing radiation in terms of the potential for causing harm. The sievert (Sv) is the unit of effective dose that takes into account the type of radiation and sensitivity of tissues and organs. It is a way to measure ionizing radiation in terms of the potential for causing harm. The Sv takes into account the type of radiation and sensitivity of tissues and organs. The Sv is a very large unit so it is more practical to use smaller units such as millisieverts (mSv) or microsieverts (μSv). There are one thousand μSv in one mSv, and one thousand mSv in one Sv. In addition to the amount of radiation (dose), it is often useful to express the rate at which this dose is delivered (dose rate), such as microsieverts per hour (μSv/hour) or millisievert per year (mSv/year). Beyond certain thresholds, radiation can impair the functioning of tissues and/or organs and can produce acute effects such as skin redness, hair loss, radiation burns, or acute radiation syndrome. These effects are more severe at higher doses and higher dose rates. For instance, the dose threshold for acute radiation syndrome is about 1 Sv (1000 mSv). If the radiation dose is low and/or it is delivered over a long period of time (low dose rate), the risk is substantially lower because there is a greater likelihood of repairing the damage. There is still a risk of long-term effects such as cancer, however, that may appear years or even decades later. Effects of this type will not always occur, but their likelihood is proportional to the radiation dose. This risk is higher for children and adolescents, as they are significantly more sensitive to radiation exposure than adults.
4 Oct 2017
19
Share Video

0:17
We can play Justin Bieber and Miley Cyrus, then what the harm in playing this video where you can hear a beat that is just mind-boggling.
4 Oct 2017
567
Share Video

15:44
Radiation may bring to mind the superheroes and monsters of comic books and movies, but radiation is very real and all around us! In fact, you are currently being bombarded by radiation. It might be coming from the sun, various electronic devices you own, or even the food in your kitchen. If you have ever eaten a banana, you have eaten a radioactive material. The good news is that the vast majority of radiation you are exposed to is relatively harmless. Whether or not radiation can harm you depends on the type of radiation, the dosage you come in contact with, and the length of the exposure. Here we'll go over the different types of radiation, their causes, uses to us, and dangers. Before we get started, you need to know what exactly radiation is in general. Radiation can be defined as the transmission of energy from a body in the form of waves or particles. This can encompass anything from dangerous radiation created by a nuclear power plant to the harmless light created by a flashlight. Ionizing and Non-Ionizing Radiation Before we go any further, let's cover some basic terms. Ionization is the process in which an atom either loses or gains an electron. Since electrons are negatively charged, this process will take an atom, which normally has no charge, and give it either a positive or negative charge depending on whether it lost or gained electrons. An atom that has a charge to it is called an ion. So the difference between ionizing radiation and non-ionizing radiation is that ionizing radiation has enough energy to strip electrons off of atoms, and non-ionizing radiation does not have enough energy to strip electrons off of atoms. One of the easiest ways to visualize the difference between these two is to look at the frequency spectrum for light. As the frequency goes up, so does energy, so we can see the energy cut off for light where it goes from non-ionizing to ionizing radiation is within the ultraviolet light spectrum.
10 Oct 2017
14
Share Video

15:44
Radiation includes High-energy electromagnetic waves (x-rays, gamma rays) Particles (alpha particles, beta particles, neutrons) Alpha particles are energetic helium nuclei emitted by some radionuclides with high atomic numbers (eg, plutonium, radium, uranium); they cannot penetrate skin beyond a shallow depth (< 0.1 mm). Beta particles are high-energy electrons that are emitted from the nuclei of unstable atoms (eg, cesium-137, iodine-131). These particles can penetrate more deeply into skin (1 to 2 cm) and cause both epithelial and subepithelial damage. Neutrons are electrically neutral particles emitted by a few radionuclides (eg, californium-252) and produced in nuclear fission reactions (eg, in nuclear reactors); their depth of tissue penetration varies from a few millimeters to several tens of centimeters, depending on their energy. They collide with the nuclei of stable atoms, resulting in emission of energetic protons, alpha and beta particles, and gamma radiation. Gamma radiation and x-rays are electromagnetic radiation (ie, photons) of very short wavelength that can penetrate deeply into tissue (many centimeters). While some photons deposit all their energy in the body, other photons of the same energy may only deposit a fraction of their energy and others may pass completely through the body without interacting. Because of these characteristics, alpha and beta particles cause the most damage when the radioactive atoms that emit them are within the body (internal contamination) or, in the case of beta-emitters, directly on the body; only tissue in close proximity to the radionuclide is affected. Gamma rays and x-rays can cause damage distant from their source and are typically responsible for acute radiation syndromes (ARS—see Radiation Exposure and Contamination : Acute radiation syndromes (ARS)).
19 Sep 2017
34
Share Video

15:44
Radiation injury is damage to tissues caused by exposure to ionizing radiation. Large doses of ionizing radiation can cause acute illness by reducing the production of blood cells and damaging the digestive tract. A very large dose of ionizing radiation can also damage the heart and blood vessels (cardiovascular system), brain, and skin. Radiation injury due to large and very large doses is referred to as a tissue reaction. The dose needed to cause visible tissue injury varies with tissue type. Ionizing radiation can increase the risk of cancer. Radiation exposure of sperm and egg cells carries little increased risk of genetic defects in offspring. Doctors remove as much external and internal (material that is inhaled or ingested) radioactive material as possible and treat symptoms and complications of radiation injury. In general, ionizing radiation refers to high-energy electromagnetic waves (x-rays and gamma rays) and particles (alpha particles, beta particles, and neutrons) that are capable of stripping electrons from atoms (ionization). Ionization changes the chemistry of affected atoms and any molecules containing those atoms. By changing molecules in the highly ordered environment of the cell, ionizing radiation can disrupt and damage cells. Cellular damage can cause illness, increase the risk of developing cancer, or both.
20 Sep 2017
31
Share Video

15:44
The amount of radiation is measured in several different units. The roentgen (R) is a measure of the ionizing ability of radiation in air and is commonly used to express the intensity of exposure to radiation. How much radiation people are exposed to and how much is deposited in their body may be very different. The gray (Gy) and sievert (Sv) are measures of the dose of radiation, which is the amount of radiation deposited in matter, and are the units used to measure dose in humans after exposure to radiation. The Gy and Sv are similar, except the Sv takes into account the effectiveness of different types of radiation to cause damage and the sensitivity of different tissues in the body to radiation. Low dose levels are measured in mGy (1 mGy = 1/1000Gy) and mSv (1 mSv = 1/1000Sv). Contamination vs. irradiation An individual's radiation dose can be increased in two ways, contamination and irradiation. Many of the most significant radiation accidents have exposed people to both. Contamination is contact with and retention of radioactive material, usually as a dust or liquid. External contamination is that on skin or clothing, from which some can fall or be rubbed off, contaminating other people and objects. Internal contamination is radioactive material deposited within the body, which it may enter by ingestion, inhalation, or through breaks in the skin. Once in the body, radioactive material may be transported to various sites, such as the bone marrow, where it continues to emit radiation, increasing the dose, until it is removed or emits all its energy (decays). Internal contamination is more difficult to remove than external contamination.
23 Sep 2017
17
Share Video

15:44
When a person has experienced known or probable exposure to a high dose of radiation from an accident or attack, medical personnel take a number of steps to determine the absorbed radiation dose. This information is essential for determining how severe the illness is likely to be, which treatments to use and whether a person is likely to survive. Information important for determining an absorbed dose includes: Known exposure. Details about distance from the source of radiation and duration of exposure can help provide a rough estimate of the severity of radiation sickness. Vomiting and other symptoms. The time between radiation exposure and the onset of vomiting is a fairly accurate screening tool to estimate absorbed radiation dose. The shorter the time before the onset of this sign, the higher the dose. The severity and timing of other signs and symptoms also may help medical personnel determine the absorbed dose. Blood tests. Frequent blood tests over several days enable medical personnel to look for drops in disease-fighting white blood cells and abnormal changes in the DNA of blood cells. These factors indicate the degree of bone marrow damage, which is determined by the level of an absorbed dose. Dosimeter. A device called a dosimeter can measure the absorbed dose of radiation but only if it was exposed to the same radiation event as the affected person. Survey meter. A device such as a Geiger counter can be used to survey people to determine the body location of radioactive particles. Type of radiation. A part of the larger emergency response to a radioactive accident or attack would include identifying the type of radiation exposure. This information would guide some decisions for treating people with radiation sickness.
26 Sep 2017
28
Share Video

15:44
Radiation exposure may be internal or external, and can be acquired through various exposure pathways. Internal exposure to ionizing radiation occurs when a radionuclide is inhaled, ingested or otherwise enters into the bloodstream (for example, by injection or through wounds). Internal exposure stops when the radionuclide is eliminated from the body, either spontaneously (such as through excreta) or as a result of a treatment. External exposure may occur when airborne radioactive material (such as dust, liquid, or aerosols) is deposited on skin or clothes. This type of radioactive material can often be removed from the body by simply washing. Exposure to ionizing radiation can also result from irradiation from an external source, such as medical radiation exposure from X-rays. External irradiation stops when the radiation source is shielded or when the person moves outside the radiation field. People can be exposed to ionizing radiation under different circumstances, at home or in public places (public exposures), at their workplaces (occupational exposures), or in a medical setting (as are patients, caregivers, and volunteers). Exposure to ionizing radiation can be classified into 3 exposure situations. The first, planned exposure situations, result from the deliberate introduction and operation of radiation sources with specific purposes, as is the case with the medical use of radiation for diagnosis or treatment of patients, or the use of radiation in industry or research. The second type of situation, existing exposures, is where exposure to radiation already exists, and a decision on control must be taken – for example, exposure to radon in homes or workplaces or exposure to natural background radiation from the environment. The last type, emergency exposure situations, result from unexpected events requiring prompt response such as nuclear accidents or malicious acts.
28 Sep 2017
19
Share Video

0:43
Marshmello at Sunset Music Festival in Tampa, Florida
4 Oct 2017
29
Share Video

1:07
In this video you can see, why you should make use of solar hot water. You should use what the cavemen already used.
7 Oct 2017
17
Share Video